## Exercise 2

A spring with an $8-\mathrm{kg}$ mass is kept stretched 0.4 m beyond its natural length by a force of 32 N . The spring starts at its equilibrium position and is given an initial velocity of $1 \mathrm{~m} / \mathrm{s}$. Find the position of the mass at any time $t$.

## Solution

In order to determine the spring constant, use the fact that 32 N is needed to stretch the spring 0.4 m .

$$
\begin{gathered}
F=k\left(x-x_{0}\right) \\
32 \mathrm{~N}=k(0.4 \mathrm{~m}) \\
k=80 \frac{\mathrm{~N}}{\mathrm{~m}}
\end{gathered}
$$

Apply Newton's second law to obtain the equation of motion.

$$
F=m a
$$

Use the fact that acceleration is the second derivative of position $a=d^{2} x / d t^{2}$ and the fact that the spring force $F=-k x$ is the only force acting on the mass.

$$
-k x=m \frac{d^{2} x}{d t^{2}}
$$

Divide both sides by $m$.

$$
\begin{equation*}
\frac{d^{2} x}{d t^{2}}=-\frac{k}{m} x \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $x=e^{r t}$.

$$
x=e^{r t} \quad \rightarrow \quad \frac{d x}{d t}=r e^{r t} \quad \rightarrow \quad \frac{d^{2} x}{d t^{2}}=r^{2} e^{r t}
$$

Plug these formulas into equation (1).

$$
r^{2} e^{r t}=-\frac{k}{m} e^{r t}
$$

Divide both sides by $e^{r t}$.

$$
r^{2}=-\frac{k}{m}
$$

Solve for $r$.

$$
r=\left\{-i \sqrt{\frac{k}{m}}, i \sqrt{\frac{k}{m}}\right\}
$$

Two solutions to the ODE are $e^{-i \sqrt{k / m} t}$ and $e^{i \sqrt{k / m} t}$.

By the principle of superposition, then, the general solution to equation (1) is

$$
\begin{aligned}
x(t) & =C_{1} e^{-i \sqrt{k / m} t}+C_{2} e^{i \sqrt{k / m} t} \\
& =C_{1}\left(\cos \sqrt{\frac{k}{m}} t-i \sin \sqrt{\frac{k}{m}} t\right)+C_{2}\left(\cos \sqrt{\frac{k}{m}} t+i \sin \sqrt{\frac{k}{m}} t\right) \\
& =\left(C_{1}+C_{2}\right) \cos \sqrt{\frac{k}{m}} t+\left(-i C_{1}+i C_{2}\right) \sin \sqrt{\frac{k}{m}} t \\
& =C_{3} \cos \sqrt{\frac{k}{m}} t+C_{4} \sin \sqrt{\frac{k}{m}} t,
\end{aligned}
$$

where $C_{3}$ and $C_{4}$ are arbitrary constants. Differentiate it with respect to $t$ to get the velocity.

$$
\frac{d x}{d t}=-C_{3} \sqrt{\frac{k}{m}} \sin \sqrt{\frac{k}{m}} t+C_{4} \sqrt{\frac{k}{m}} \cos \sqrt{\frac{k}{m}} t
$$

Apply the initial conditions, $x(0)=x_{0}-x_{0}=0$ and $x^{\prime}(0)=1$, to determine $C_{3}$ and $C_{4}$.

$$
\begin{aligned}
x(0) & =C_{3}=0 \\
\frac{d x}{d t}(0) & =C_{4} \sqrt{\frac{k}{m}}=1
\end{aligned}
$$

Solving this system of equations yields $C_{3}=0$ and $C_{4}=\sqrt{m / k}$.

$$
x(t)=\sqrt{\frac{m}{k}} \sin \sqrt{\frac{k}{m}} t
$$

Therefore, plugging in $m=8 \mathrm{~kg}$ and $k=80 \mathrm{~N} / \mathrm{m}$, the displacement from equilibrium is

$$
x(t)=\frac{1}{\sqrt{10}} \sin \sqrt{10} t
$$

Below is a plot of $x(t)$ versus $t$.


